设置

关灯

第六章 流数术与无穷级数(2)(第2/3页)

么数学题。

艾拉只能悻悻地缩回马车的角落,自己一个人在纸上继续写写画画着。作为报复,当有人问她为什么要走这种路线时,她也总是敷衍地说道:“等我做完这道题。”

在这段时间里,她把所有常见的几何图形都用基于坐标轴的函数式表达了出来。然后,问题就又回到了那条抛物线上。

抛物线是一条曲线。经验告诉艾拉,每当问题和曲线相关的时候,难度就会一下子变大。

通过坐标轴,艾拉已经可以用数字描述各种各样的曲线。为了给自己一些信心,她先是选择了最简单的抛物线:y=来进行研究。

她做了一条直线y=1,与抛物线交于一个a点。这样,抛物线、直线、轴三条线就围成了一个不规则的几何图形。

艾拉想要计算出这个不规则图形的面积。

她在抛物线上找出一个个点,分别垂直轴与y轴做出两条线,以此把这个不规则图形分成了一个个矩形。这些矩形的面积加起来显然大于那个不规则图形的面积。然而,把这些矩形分的越细,他们的面积就会越接近于那个不规则图形。

艾拉假设从坐标轴原点到y=1这条直线之间分出了n个矩形,那么每个矩形的宽度就是1/n。又因为抛物线的函数式是y=,那么第一个矩形的高就是(1/n),第二个矩形的高度就是(/n)……

那么,所有矩形的面积之和就是:

=1/n(1/n)+1/n(/n)+……+1/n(n/n)

这是一个无穷级数。然而,戈特弗里德曾经教过艾拉无穷多项式的平方和公式。在利用这个公式将这个无穷级数化简之后,她得到了一个极为简单的算式:

=1/3+1/(n)+1/(6n)

n越大,矩形的面积和就越接近于那个不规则图形。那么当n无限大的时候,矩形的面积之和就会等于那个不规则图形的面积。此时,1/(n)和1/(6n)就是无限小,完全可以舍去。

于是这个不规则图形的面积就显而易了:=1/3。

——无限大、无限小

艾拉把刚刚出现的这两个概念低声念了一遍。在数学运算中出现了无限的概念,让她多少感到有些不适。

她甩甩头,把这种不适感抛到脑后,然后将函数式由y=改成了y=3

虽然只是轻微的改动,但要求出面积的难度立刻大了数倍。这次,艾拉写了整整两页纸,也没能向先前一样把公式化简。

“为什么一涉及曲线,就总是会出现无限啊!”

艾拉抛下笔,抱着头哀嚎了起来。

无限,这是所有数学家都难以跨越的深渊。

抛物线和圆都还只是最简单的曲线,只不过是从无限的深渊边探出来的一根小小的树枝。&nbp;艾拉抓住了这根小树枝。可当继续下望

正经影视大全尽在:Chinalumeng.net 鲁萌影视

本章未完,请点击下一页继续阅读->>>